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We present the calculation of single-vortex statistical equilibria in a disk using the mean field theory
respecting all the conservation laws of the two-dimensional Euler equations. The equilibrium may help in
understanding the formation of coherent structures in experiments, numerical simulations, and planetary atmo-
spheres. We calculate two-dimensional single-vortex solutions in the disk and confirm the bifurcation from
symmetric to off-center vortices predicted by a linear perturbation analysis. With a second-order perturbation
analysis and a calculation of the thermodynamic stability we find that both supercritical and subcritical bifur-
cations can occur, depending on the parameters. The shapes of the off-center vortices also are in good
agreement with measurements on an electron plasma.@S1063-651X~96!11212-5#

PACS number~s!: 47.20.2k, 05.20.Gg, 52.25.Kn, 92.90.1x

I. INTRODUCTION

Two-dimensional~2D! turbulence evolution is known to
be dominated by the formation of coherent vortices. Many
numerical simulations and experiments@1–3# have demon-
strated that the relaxation of 2D turbulence with initial small
scale motion is characterized by the formation of larger and
larger coherent vortices, and eventually a steady single co-
herent structure is reached. The large, long-lived vortices ob-
served in planetary atmospheres are also possible examples
of this process. These studies strongly suggest that the for-
mation of large scale structures is mainly an inviscid process,
and viscosity and dissipation only affect the fine scale mo-
tion. This leads to the idea of using the statistical mechanics
of a 2D incompressible ideal fluid~the Euler equations! to
understand these coherent structures. A statistical mechanics
treatment of the Euler equations modeling the fluid as a col-
lection of point vortices has been studied for a long time@4#.
However, the point vortex model suffers from the problem
that the infinity of conservation laws of vorticity integrals of
the Euler equations are not respected. A statistical theory of
a 2D incompressible ideal fluid respecting all the conserved
quantities has been derived@5#. Based on the assumption of
ergodicity constrained by the conservation laws, the final
equilibrium from a given initial condition can be calculated
directly without knowing the intervening dynamics and the
dependence of the final states on the system parameters can
be quickly studied.

Studying the single-vortex statistical equilibrium could be
the first step toward understanding coherent vortex struc-
tures. Transitions from a simple shear layer to a coherent
vortex have been studied@6,7# in the mean field theory with
rectangular or annular geometries. Single-vortex solutions in
a disk have also been investigated@8,7# using the point vor-
tex model or the mean field theory. In these two papers sym-
metric single-vortex solutions at the disk center are calcu-
lated and a bifurcation to off-center single vortices is found
by a linear perturbation analysis on the symmetric solutions.

In this paper we solve the 2D mean field equations for both
symmetric and asymmetric solutions to get a complete pic-
ture of the problem. These solutions allow us to compare the
thermodynamic quantities directly and show explicitly that
there is a critical energy above which the off-center vortices
are thermodynamically more probable states. The shapes of
off-center vortices in the 2D solutions are also compared
with the results of an electron plasma experiment@9# and
good agreement is found.

We also perform a second-order perturbation analysis at
the bifurcation point. By extending the analysis to second
order we can quickly identify the bifurcation type and under-
stand the behavior of off-center vortices near it. Although we
can also get this information by computing all 2D asymmet-
ric solutions, the analysis is faster and free of the numerical
error from discretizing the disk. Combining the nonlinear
analysis results with the 2D solutions, we show that the bi-
furcation is always supercritical and thus a second-order
transition when the system energy is varied. However, if the
system temperature is used as the control parameter, a first-
order transition~a subcritical bifurcation! can occur at some
parameters. An interesting aspect of this first-order transition
is that because of the long range vortex-vortex interaction the
system will not be in a mixture of two stable states as is
common in systems with short range interaction~e.g., water!.
Finally we use a stability analysis to calculate explicitly the
thermodynamic stability property of the solutions, i.e.,
whether they are local entropy maxima; the stability con-
firms the results of the bifurcation analysis.

II. STATISTICAL EQUILIBRIUM

The dynamics of a 2D incompressible ideal fluid is de-
scribed by the equation of motion:

]u

]t
1~u•¹…u52¹p. ~1!

Hereu(r ) is the 2D velocity field andp is the fluid pressure.
The equation of mass conservation of the incompressible
flow is ¹•u(r )50 and can be satisfied by introducing the
stream function c(r ), defined as u(r )5¹3c ẑ
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5(]c/]y,2]c/]x). Taking the curl of Eq.~1! and defining
vorticity v(r ) ẑ5¹3u(r ) yields the equation of motion

]v

]t
1~u•¹!v50. ~2!

The stream function and vorticity are related by the Poisson
equation,¹2c52v. Equation~2! implies that there are an
infinite number of conserved vorticity integrals,
*h(t) f „v(r )…dr , for any path]h(t) moving with the fluid
and f an arbitrary function. These conserved quantities can
be described by a conserved vorticity distribution function
g(s) defined as

g~s![E d„s2v~r !…dr .

Physicallyg(s) measures the fractional area covered by the
vorticity level s. Combining g(s) and the Hamiltonian
H51/2* uu„r …u2dr , the statistical mechanics treatment pre-
dicts that the asymptotic large time equilibrium is given by
@5#

n0~r ,s!5
exp$2b@s@c0~r !2h~r !#2m~s!#%

*2`
` ds8exp„2b$s8@c0~r !2h~r !#2m~s8!%…

Here the coarse-grained equilibrium stream functionc0 and
vorticity field v0 are determined self-consistently fromn0,

2¹2c0~r !5v0~r !5E
2`

`

dssn0~r ,s!.

The functionm(s) is determined by theg(s) constraint:

g~s!5E drn0~r ,s!,

and the inverse temperatureb is determined by fixing the
energy. The functionh(r ) may be used to account for exter-
nal fields and other conserved quantities in geometries of
special symmetry.

In this paper we solve the above mean field equations in a
unit disk. We also choose for simplicity theg(s) corre-
sponding to an initial vorticity distribution with only two
vorticity levels, 0 andq,

g~s!5~V2a!d~s!1ad~s2q!, 0<a<V,

with V the area of the disk. In an equilibrium state the
coarse-grained vorticity fieldv0(r ) will typically take on a
continuum of values, always bounded by the valueq. The
energy of the system is given by

E5
1

2E c0v0dr ,

if we use the boundary condition:c0(r51)50. The entropy
is calculated by

S52E Fv0

q
lnS v0

q D1S 12
v0

q D lnS 12
v0

q D Gdr .

Finally because of the rotational symmetry of the disk,
h(r ) includes a Lagrange multiplier termVr 2 to impose the
conservation of angular momentum. With all these consider-
ations, the mean field equations become@5#

¹2c0~r !5v0~r !5
q

11exp$b@qc0~r !1Vr 22m#%
. ~3!

HereV andm are constants to be determined by the conser-
vation of total vorticityQ and angular momentumM ,

Q5aq5E v0dr , M5E r 2v0dr .

In the following sections we always scale parameters such
thatq51 in our calculations.

III. SINGLE-VORTEX SOLUTIONS

Single-vortex solutions of the mean field equations in a
disk include both symmetric vortices at the center and off-
center vortices. Some properties of the symmetric solutions
have been investigated in Ref.@7#. We will restate some of
them here for completeness. For the calculation of symmetric
solutions, the equations become

2
1

r

d

dr S r dc0~r !

dr D
5v0~r !5

q

11exp$b@qc0~r !1Vr 22m#%
.

This equation can be numerically integrated with boundary
conditions dc0 /drur505c0(r51)50. The values ofm,
V, andb are determined from the required total vorticity,
angular momentum, and energy by a standard root finding
procedure.

For off-center vortices the partial differential equation,
Eq. ~3!, must be solved. We use an iterative scheme to find
the solutions. The space of the disk is discretized into a grid
depending on whether a Fourier-finite difference or Fourier-
Chebyshev expansion is used. The iteration starts with a es-
timated vorticity distributionv t(r ). Naturally a circular vor-
tex with a total vorticity approximately equal to the
prescribedQ and a displacement from the disk center
roughly consistent with the requiredM is used since we are
interested in finding an off-center single-vortex solution.
With this v t(r ) we solve the Poisson equation¹2c t
52v t . Next thec t just calculated is substituted back into
the right-hand side of Eq.~3! and we see that for each set of
(m,V,b) a newv t can be calculated. Again a root-seeking
algorithm is used here to find the set of (m,V,b) giving an
v t with requiredQ, M , and E. Now the iteration can be
repeated until a convergedv t(r ) is reached. We find that the
method is robust and usuallyv t converges quickly to an
off-center solution or to a symmetric one if the former does
not exist. There are some variations of this method, e.g.,b
can be choosen initially and (m,V) found for prescribed
(Q,M ), or S instead ofE can be one of the fixed quantites.

Figure 1 shows the entropy as a function of energy for the
symmetric and off-center vortices withQ50.2 and
M50.04. Different values ofQ andM yield similar results.
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The energy or temperature can be considered as an indicator
of how closely the vorticity is packed. The symmetric solu-
tion has a minimum energy limit, corresponding tob→`,
with v0(r ) a uniform vorticity circular patch, shown as the
solid line in Fig. 2~a!, with its size and vorticity level
uniquely determined byQ andM . It is interesting to note
that in this case the size and level are independent of the
g(s) constraint, i.e., the value ofq in the current two-level
vorticity special case. As the energy increases (b decreases!
the vorticity level at the center rises@see Figs. 2~a! and 2~b!#.
The entropy also increases but decreases again after passing
the pointb5dS/dE50 and reaches zero at the high energy
limit when b→2`. At this limit the vorticity distribution
saturates at levelq and forms a circular vortex at the center
and a vortex ring at the disk boundary, shown as the solid
line in Fig. 2~b!. The amount of vorticity in each region is
determined by the angular momentumM . In this limit we
would expect a single off-center vortex to have a higher en-
ergy because then all vorticity can stay together by adjusting
the displacement from the center to satisfy the angular mo-
mentum constraint, and this is indeed shown by the solu-
tions.

The distribution of the off-center branch at the maximum
energy limit is an elliptical-like vortex with uniform vorticity
q at a certain displacementD from the center. As the energy
decreases, the entropy increases, the distribution of vorticity
broadens, and the vortex moves toward the disk center. At a
critical energyEc , D becomes zero and two branches of
solutions join together at the bifurcation point. At a fixed
energyE.Ec the off-center vortex always has a larger en-
tropy than the symmetrical one; i.e., it is a more probable
state. Contour plots of symmetric and off-center vortices at
the same energy are plotted in Figs. 2~c! and 2~d!, showing
the off-center vortex is more diffusive than the symmetric
one, yielding a higher entropy.

It is well known that a pure electron column in a high
magnetic field behaves to a good approximation like a 2D
ideal fluid. In Ref.@9# electron densities, equivalent to the
vorticity distributions for a 2D ideal fluid, are studied for

equilibrium electron columns. The quadrupole momentq2
and rotational frequencyf are measured for different vortex
sizes and distances to center. The parameterq2 measures the
distortion of a vortex from a circular shape, and is defined as
(pxx2pyy)/(pxx1pyy), where pxx[*x2v(r )dr and simi-
larly for pyy , with (x,y) measured from the center of a vor-
tex along the major and minor axes. We now compare our
calculations with the experimental results. First we note that
in the experiment the dependence of the behavior on the
off-center displacement is studied for electron columns with
similar size and internal distribution. To model this situation
we observe that for the mean field solutions at fixedQ and
b, differentM values will give off-center solutions at differ-
ent locations with very similar size and distribution. In this
way we can have a good correspondence between the mean
field solutions and experimental observed distributions.

For the three different values of the total vorticity used in
the experiment, we plotq2 versusD for b equal to21000
~solid lines! and2200 ~dashed lines! in Fig. 3. Calculations
for an elliptical constant vorticity approximation@11# are
also shown as the dotted lines. The vortices are very close to
constant vorticity patches for the firstb and have a smoother
distribution for the second. First we see that for bothb, the
values ofq2 for a given total vorticity are close in all three
cases. The likely physical reason is that the distortion comes
mainly from the effect of the boundary~or in terms of the
position of the image charge!, and is mostly determined by
the position of a vortex, not its detailed distribution. The
measuredq2 from the experiment, shown as the symbols in
Fig. 3, are consistent with our calculations. Although the
electron columns have internal distributions closer to those
of b52200 thanb521000, experimental errors make it

FIG. 2. Vorticity distributions forQ50.2 andM50.04 at vari-
ous conditions.~a! Symmetric solutions atb51 ~dashed line! and
b5800 ~solid line!. ~b! Symmetric solutions atb52200 ~dashed
line! andb521000~solid line!. ~c! Vorticity contours for the sym-
metric solution atE50.003. The contour levels start from 0.1 and
increase by an interval of 0.1 toward the center.~d! Vorticity con-
tours for the off-center vortex also atE50.003, with the same
contour levels as~c!.

FIG. 1. Mean field solutions forQ50.2 andM50.04. Solid
line: symmetric solutions; dashed line: off-center vortices; cross:
bifurcation point.
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difficult to tell which line is closer to the experiment. This
may also explain why the elliptical constant vorticity patch
approximation shown as the dotted lines also gives consis-
tentq2 values. At smallD the results are almost identical to
the mean field solutions with the larger negativeb but devi-
ate from the experimental results when vortices come close
to the boundary. On the other hand the mean field calcula-
tions describe correctly the trend of the experimental data at
largeD, with the solid lines seemingly better than the dashed
lines.

IV. BIFURCATION ANALYSIS

The bifurcation from symmetric solutions to off-center
vortices occurs at a critical energy and in principle we can
understand the nature of the bifurcation and the behavior
near it by computing all the solutions on the off-center
branch. However, this is very time consuming@10# and there
is always the uncertainty whether it is close enough to the
bifurcation. Here we use a second-order perturbation analysis
on symmetric solutions to investigate the bifurcation di-
rectly. Again, the mean field equation is

v~r !52¹2c~r !5
q

11exp@b~qc1Vr 22m!#

[h„c~r !,b,V,m…. ~4!

@Note that we drop the subscript 0 here forc andv from Eq.
~3!.# We write a solution moving away from the symmetric
branch at the bifurcation point onto the off-center branch as

c~r !5c0~r !1dc~r !5c0~r !1ec1~r ! cosu1e2@c2,0~r !

1c2,2~r !cos2u]1O~e3!,

v~r !5v0~r !1dv~r !5v0~r !1ev1~r ! cosu1e2@v2,0~r !

1v2,2~r !cos2u]1O~e3!,

b5b01db5b01eb11e2b21O~e3!,

V5V01dV5V01eV11e2V21O~e3!,

m5m01dm5m01em11e2m21O~e3!.

Here we use subsrcipt 0 to indicate the symmetric state and
e is a small parameter. The sinu term at ordere is not in-
cluded because it is degenerate with the cosu term due to the
rotational symmetry. Substituting these expressions into Eq.
~4! we get

dv52¹2dc5(
a

dh

dAa
U0dAa1

1

2(ag

d2h

dAadAg
U
0

dAadAg

1O~dAa
3 !.

HereAa runs throughc, b, V, andm. Now we collect terms
with the same power ofe and angular mode, and set them
equal to zero separately. It also becomes apparent here that
only c2,0 andc2,2 ~and notc2,1) are needed for thee

2 term.

e:B0b11b0r
2V12b0m150,

e cosu:~¹1
22b0D1!c1~r !50, ~5!

e2cos2u:~¹2
22b0D1!c2,2~r !52 1

4 b0
2D2c1

2 , ~6!

e2:~¹0
22b0D1!c2,0~r !52 1

4 b0
2D2c1

21D1~B0b2

1b0r
2V22b0m2!/q, ~7!

e3cosu:~¹1
22b0D1!c3,1~r !5G~r ;b2 ,V2 ,m2!. ~8!

Here,

¹m
2[

1

r

d

dr S r ddr D2
m2

r 2
,

B0[qc01V0r
22m0 ,

D1[v0~q2v0!,

D2[v0~q2v0!~q22v0!,

D3[v0~q2v0!~q
226v0q16v0

2!,

G[2b0
2D2c1~c2,01

1
2 c2,2!1D1b2c11

1
8 b0

3D3c1
3

2b0D2c1~B0b21b0r
2V22b0m2!/q.

The first equation just givesb15V15m150. The second
one, Eq.~5!, is an eigenvalue equation forc1(r ). The solu-
tion will only exist for a particular value ofb0 and thus
defines the bifurcation point of the symmetric state. After the
bifurcation pointb0 andc1(r ) are obtained,c2,2(r ) can be
calculated from Eq.~6!. To solve forc2,0(r ), we need three
constraints to determineb2, V2, andm2 in Eq. ~7!. Two of
them are given by requiringc2,0(r ) to give no changes in the

FIG. 3. q2 as a function ofD. The three groups of lines corre-
spond, from top to bottom, toQ51.5837, 1.0936, and 0.45365.
Solid lines are the mean field solutions withb521000; dashed
lines,b52200. The dotted lines are the constant vorticity elliptical
approximation. Symbols are the experimental results.
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total vorticity and angular momentum. The third one comes
from the solvability condition of the third-order equation,
Eq. ~8!. Comparing Eq.~8! with ~5!, we see that

E c1~r !G~r ;b2 ,V2 ,m2!rdr50.

Combining these three constraints and Eq.~7! we can calcu-
latec2,0(r ), b2, V2, andm2. The properties of the off-center
branch near the bifurcation can be easily computed from
these solutions. For example,

D5epE v1r
2drY Q,

q25S e2pE v2,2r
3dr2QD2D Y ~M2QD2!,

E2Ec5e22pE c0v2,0rdr1e2
p

2E c1v1rdr ,

and rotational frequency shiftD f[( f2 f 0)/ f 05e2V2 /V0,
with f 0[ f (D→0).

The bifurcation point calculated from Eq.~5! is plotted as
a cross in Fig. 1. We see that it agrees perfectly with the start
of the off-center branch. In Fig. 4 we plotD, q2, andD f as
functions ofE or b for Q50.2 andM50.04. The solid lines
are results from the bifurcation calculations and we find that
the numerical solutions of off-center vortices, shown as
crosses, agree well with the lines near the critical energy. If
the displacementD is taken as the order parameter for an
off-center state, its behavior clearly indicates a supercritical
bifurcation. Thermodynamically we have a second-order
~continuous! phase transition atEc .

Interestingly for a larger value ofM the situation changes.
Bifurcation and off-center state calculation results are shown
in Fig. 5 forQ50.2 andM50.06~largerM yielding a larger

vortex.! TheD versusE curve is similar to the previous case,
but nowb2bc near the bifurcation@which is juste

2b2 from
Eq. ~7!# is positive. Figure 5 indicates that we have a sub-
critical bifurcation when using the inverse temperature as the
control parameter. Thermodynamically when the system is
equilibrated at a fixed temperature, the transition to off-
center vortices will be first order. The transition pointb f can
be identified from the crossing of the solid and dashed lines
in the free energy–inverse temperature plot. Although it may
be difficult to see from the plot, in the small segment of the
off-center branch near the bifurcation point~the portion with
dD/db.0), d2F/db2 is negative. This leads to a negative
specific heat and indicates the state is thermodynamically
unstable at constant temperature.

The behavior becomes clearer when we plot the inverse
temperature versus energy in Fig. 6. Considering the solid
line in the inset, we see a typical equation of state for a
first-order transition. The dashed line marks the temperature
where the symmetric and asymmetric solutions have the
same free energy: the transition will occur here as the tem-
perature is varied. However, the usual interpretation of a sys-
tem at the transition temperature as a mixture of two phases
no longer applicable here due to the long range interaction
between vortices. When a system at pointA is fed energy by
a heat bath at the same temperature, the system will not be in
an equilibrium state until it gains enough energy to reach
pointB. If the contact with the heat bath is cut before reach-
ing EB , for example, atEC , the system will relax to the
equilibrium stateC, which is stable in an isolated environ-
ment. Thus if the system energy is controlled continuously
we have a continuous transition from symmetric to off-center
states.

V. THERMODYNAMIC STABILITY

The mean field equations are obtained by requiring the
vorticity distribution to be an entropy extremum. It remains

FIG. 4. Off-center vortex solutions forQ50.2 andM50.04.
Solid lines: bifurcation analysis calculations; cross: off-center vor-
tex solutions.

FIG. 5. Equilibrium states forQ50.2 andM50.06. In the up-
per two graphs, solid lines: off-center vortices; dotted lines: sym-
metric vortices; cross: bifurcation point. In the lower two graphs,
solid lines: bifurcation analysis calculations; cross:off-center vortex
solutions.
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to be shown whether a particular solution is a maximum,
minimum, or saddle point. From thermodynamics we know
that the entropy must be a maximum for an equilibrium state
to be stable. Consideration of the stability also helps us to
understand the bifurcation. To determine the thermodynamic
stability we add a small variationdn(r ,s) to a solution
n0(r ,s) and examine how the thermodynamic parameters
change. This idea, with different implementation, has been
used previously@6,8,12#. Here for a closed system with a
fixed energy, we will examine the entropy change under the
constraints of constant total vorticity, angular momentum,
and energy. On the other hand for a system equilibrating
with a heat bath at a constant temperature, the free energy
will be studied with fixedQ, M , andb. Besides these ther-
modynamic contraints, all the infinite conservation laws of
vorticity integrals should also be respected bydn. Since the
state is already in equilibrium, the entropy or free energy will
be evaluated up to second order indn. In the current case of
a two-level initial vorticity field, a small perturbation
dv(r ) always satisfies the conservation of vorticity integrals.
The changes in the total vorticity, angular momentum, and
energy are

dQ5E dvdr , dM5E r 2dvdr ,

dE5E ~c0dv1 1
2dcdv!dr[dE~1!1dE~2!.

The entropy change, up to the second order, is

dS5bE c0dvdr2E ~dv!2

2v0~q2v0!
dr[dS~1!1dS~2!,

and the free energy change isdF5dS2bdE
5dS(2)2bdE(2). For convenience ourF differs from the
usual free energy by a factor of2b. Note that indF the
linear terms fromdS anddE cancel and we have a quadratic
form left. For a closed system, becausedE is required to be
zero, we could usedS2bdE instead ofdS. Thus for both
cases we will investigatedS(2)2bdE(2) but the constraint
dE50 is required for a closed system as well as
dQ5dM50. In practice onlydE(1)50 is needed because
dS is only evaluated to second order.

To proceed we expanddv(r ) in a complete set of ortho-
normal functionsf i(r ): dv(r )5( iaif i(r ). ThendQ, dM ,
dE(1), anddS(2)2bdE(2) can be expressed as

dQ5(
i
Qiai , dM5(

i
M iai ,

dE~1!5(
i
Eiai , dS~2!2bdE~2!5(

i j
Si j aiaj .

HereQi , Mi , andEi are vectors andSi j is a matrix depend-
ing only onv0(r ). Now we make an arbitrary linear trans-
formation transformingai to bi but requiring

b15(
i
Qiai , b25(

i
M iai ,

b35(
i
Eiai ~ in the case of a closed system.!

The constraints can now be satisfied withb15b250 ~or
b15b25b350 for a closed system.! In this new coordinate,
Si j changes to another matrixTi j and dS(2)2bdE(2) be-
comes ( i j.2(or3)Ti j bibj . By removing the first two~or
three! rows and columns fromTi j , we can perform the
analysis without worrying about the constraints. If all eigen-
values of the newTi j are negative, the state (v0 ,c0) will be
a free energy~or entropy! maximum. When the largest ei-
genvalue reaches zero as system parameters change, the state
becomes a saddle point.

In the unit disk we expanddv(r ) in Fourier modes in the
azimuthal direction and in Chebyshev polynomials in the
radial direction:

dv~r !5 (
m52`

`

(
n50

m1n5even

`

amnTn~r !eimu.

Herem1n even is required to give the correct parity for
eachm mode. When the calculation is applied to a symmet-
ric distribution, the componentamn separates for different
m and every eigenvector has a definite value ofm. The cal-
culation is also faster because eachm can be done separately.
This is no longer true for an off-center vortex where allm
modes are coupled together.

The largest eigenvalues ofm<3 for the symmetric solu-
tions are shown in Fig. 7 for a closed system withQ50.2
andM50.04. For a fixed temperature system them50 ei-
genvalues will be different but the conclusions are similar.
All eigenvalues are negative except form51 when the en-
ergy is larger than the critical energy obtained from the bi-

FIG. 6. b-E relation for the symmetric and off-center states with
Q50.2 andM50.06. The line on the left is the symmetric solution;
on the right the off-center vortex. In the inset the symmetric branch
below the bifurcation point is drawn dotted and the horizontal
dashed line marks theb where free energy of both branches cross
in Fig. 5.
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furcation analysis. This agrees with our calculations in pre-
vious sections in predicting that the symmetric states are
stable belowEc . AboveEc the solution is no longer a local
entropy maximum and them51 nature of the unstable ei-
genvector confirms that a bifurcation to an off-center vortex
occurs.

Next we examine the stability of off-center vortices. For
the case in Fig. 4 with a supercritical pitchfork bifurcation, it
is natural to expect that these single vortices are stable. This
is exactly the case as shown in the upper part of Fig. 8: all
eigenvalues are negative and approach zero atEc for both
fixed energy and temperature cases.~There is actually a zero
eigenvalue, not shown in the figure, because of the rotational
degeneracy.! However, forM50.06 at a fixed temperature,
we have shown that the bifurcation is subcritical and we
expect from the behavior of thermodynamic quantities that
near the bifurcation the off-center branch is unstable. The
solid line in the lower graph of Fig. 8 with a positive eigen-
value in this region explicitly shows that the states are not
free energy maxima. On the other hand, when we consider a
closed system we have all negative eigenvalues and this
again agrees with the bifurcation analysis.

VI. CONCLUSIONS

In this paper the properties of the symmetric and off-
center single vortices in a disk are calculated using the mean
field theory of the Euler equations respecting the infinite
number of conserved quantities. The comparison of the en-
tropy of these solutions shows that the off-center vortices are
thermodynamically more probable states than the symmetric
vortices. The relation between the quadrupole moment speci-
fying the degree of distortion from a circular shape and the
vortex distance to the disk center agrees well with the result
from an electron plasma experiment. The bifurcation from
symmetric to off-center vortices is also investigated by a
second-order perturbation analysis, which indicates the bifur-
cation is a supercritical~forward! pitchfork bifurcation when

the system energy is used as the control parameter. On the
other hand if temperature is controlled, a subcritical~back-
ward! pitchfork bifurcation, and hence a first-order transi-
tion, will occur for some parameters. Our calculations of the
thermodynamic stability of these solutions confirm these re-
sults.

The analysis we have presented is a local analysis around
the stationary points of the mean field solution. However,
since the stationary points that are stable are the asymptotic
long time solutions fromany initial condition with the pre-
scribed values of the conserved quantities~at least ones lead-
ing to well mixed dynamics!, the predictions have a global
significance. The nature of the predictions is also quite dif-
ferent from given by a local stability analysis of the dynami-
cal equations.
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FIG. 7. Largest eigenvalues for symmetic solutions with
Q50.2 andM50.04. The vertical line indicates the bifurcation
energy.

FIG. 8. Largest eigenvalues for off-center vortex solutions with
Q50.2. M equals 0.04 and 0.06 for the upper and lower graphs
respectively. In both graphs, solid lines correspond to fixedb,
dashed line to fixedE. The vertical solid lines indicate the bifurca-
tion points; the vertical dashed line marks the beginning of the
unstable segment calculated for the off-center solutions.
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