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Mean field equilibria of single coherent vortices
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We present the calculation of single-vortex statistical equilibria in a disk using the mean field theory
respecting all the conservation laws of the two-dimensional Euler equations. The equilibrium may help in
understanding the formation of coherent structures in experiments, numerical simulations, and planetary atmo-
spheres. We calculate two-dimensional single-vortex solutions in the disk and confirm the bifurcation from
symmetric to off-center vortices predicted by a linear perturbation analysis. With a second-order perturbation
analysis and a calculation of the thermodynamic stability we find that both supercritical and subcritical bifur-
cations can occur, depending on the parameters. The shapes of the off-center vortices also are in good
agreement with measurements on an electron plag®i€63-651X96)11212-5

PACS numbgs): 47.20—k, 05.20.Gg, 52.25.Kn, 92.96x

[. INTRODUCTION In this paper we solve the 2D mean field equations for both
symmetric and asymmetric solutions to get a complete pic-
Two-dimensional(2D) turbulence evolution is known to ture of the problem. These solutions allow us to compare the
be dominated by the formation of coherent vortices. Manythermodynamic quantities directly and show explicitly that
numerical simulations and experimerﬁﬂs_3] have demon- there is a critical energy above which the off-center vortices
strated that the relaxation of 2D turbulence with initial smallare thermodynamically more probable states. The shapes of
scale motion is characterized by the formation of larger andff-center vortices in the 2D solutions are also compared
larger coherent vortices, and eventually a steady single cov¥ith the results of an electron plasma experimgdit and
herent structure is reached. The large, long-lived vortices obgood agreement is found.
served in planetary atmospheres are also possible examples\We also perform a second-order perturbation analysis at
of this process. These studies strongly suggest that the fothe bifurcation point. By extending the analysis to second
mation of large scale structures is mainly an inviscid processorder we can quickly identify the bifurcation type and under-
and Viscosity and dissipation on|y affect the fine scale moStand the behavior of off-center vortices near it. Although we
tion. This leads to the idea of using the statistical mechanic§an also get this information by computing all 2D asymmet-
of a 2D incompressible ideal fluitthe Euler equationsto  fic solutions, the analysis is faster and free of the numerical
understand these coherent structures. A statistical mechaniggor from discretizing the disk. Combining the nonlinear
treatment of the Euler equations modeling the fluid as a colanalysis results with the 2D solutions, we show that the bi-
lection of point vortices has been studied for a long tlde ~ furcation is always supercritical and thus a second-order
However, the point vortex model suffers from the problemtransition when the system energy is varied. However, if the
that the infinity of conservation laws of vorticity integrals of System temperature is used as the control parameter, a first-
the Euler equations are not respected. A statistical theory d¥rder transitiona subcritical bifurcationcan occur at some
a 2D incompressible ideal fluid respecting all the conservedarameters. An interesting aspect of this first-order transition
quantities has been derivg]. Based on the assumption of IS that because of the long range vortex-vortex interaction the
ergodicity constrained by the conservation laws, the finapystem will not be in a mixture of two stable states as is
equilibrium from a given initial condition can be calculated COmmon in systems with short range interactiery., watey.
directly without knowing the intervening dynamics and the Finally we use a stability analysis to calculate explicitly the
dependence of the final states on the system parameters c@¢rmodynamic stability property of the solutions, i.e.,
be quickly studied. whether they are local entropy maxima; the stability con-
Studying the single-vortex statistical equilibrium could be firms the results of the bifurcation analysis.
the first step toward understanding coherent vortex struc-
tures. Transitions from a simple shear layer to a coherent Il. STATISTICAL EQUILIBRIUM
vortex have been studid®,7] in the mean field theory with _ ) o o
rectangular or annular geometries. Single-vortex solutions in 1he dynamics of a 2D incompressible ideal fluid is de-
a disk have also been investigafé@j7] using the point vor- ~ Scribed by the equation of motion:
tex model or the mean field theory. In these two papers sym-
metric single-vortex solutions at the disk center are calcu-
lated and a bifurcation to off-center single vortices is found
by a linear perturbation analysis on the symmetric solutions.
Hereu(r) is the 2D velocity field ang is the fluid pressure.
The equation of mass conservation of the incompressible
*Electronic address: peilong@styx.caltech.edu flow is V-u(r)=0 and can be satisfied by introducing the
"Electronic address: mcc@styx.caltech.edu stream function (r), defined as u(r)=VXxyz
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= (9l dy,— vl 9x). Taking the curl of Eq(1) and defining Finally because of the rotational symmetry of the disk,
vorticity w(r)z=Vxu(r) yields the equation of motion h(r) includes a Lagrange multiplier terfr? to impose the
conservation of angular momentum. With all these consider-

Jw i i i
EJr(u-V)w:O. ) ations, the mean field equations becoég

VZ4o(r) = wo(r) = ()

q
The stream function and vorticity are related by the Poisson 1+exp{ Blquo(r)+Qr2—ul}
equation,V2y= — w. Equation(2) implies that there are an )
infinite number of conserved vorticity integrals, Here{ andu are constants to be determined by the conser-
J oo (@(r))dr, for any pathdz(t) moving with the fluid vation of total vorticityQ and angular momenturif
andf an arbitrary function. These conserved quantities can
be described by a conserved vorticity distribution function Q:aq:f wodr, M:f r2wdr.
g(o) defined as

In the following sections we always scale parameters such

g(o-)Ef 8(o—w(r))dr. thatg=1 in our calculations.
Physicallyg(o) measures the fractional area covered by the Ill. SINGLE-VORTEX SOLUTIONS
vorticity level o. Combining g(o) and the Hamiltonian Single-vortex solutions of the mean field equations in a

H=1/2f|u(r)|?dr, the statistical mechanics treatment pre-gisk include both symmetric vortices at the center and off-
dicts that the asymptotic large time equilibrium is given by center vortices. Some properties of the symmetric solutions

[5] have been investigated in Ré%]. We will restate some of
them here for completeness. For the calculation of symmetric
no(r, o) = expl— Blalo(r) —h(r)]—p(a)]} solutions, the equations become
" [Zudaexp(= Blo' [¢o(r) —h(r)] - u(a")})
1.d/[ dgo(r)
Here the coarse-grained equilibrium stream functjgrand Ty dr r dr
vorticity field wy are determined self-consistently framg,
q
o =wo(r)= T
_V2¢O(r):wo(r):f doony(r,o). 1+expBlago(r)+Qre—ul}
- This equation can be numerically integrated with boundary
The functionu (o) is determined by thg(o) constraint: conditions dyo/dr|, o= tyo(r=1)=0. The values ofyu,

), and 8 are determined from the required total vorticity,
angular momentum, and energy by a standard root finding
Q(U)IJ drng(r,o), procedure.

For off-center vortices the partial differential equation,
and the inverse temperatug® is determined by fixing the EQ. (3), must be solved. We use an iterative scheme to find
energy. The functiom(r) may be used to account for exter- the solutions. The space of the disk is discretized into a grid
nal fields and other conserved quantities in geometries diepending on whether a Fourier-finite difference or Fourier-
special symmetry. Chebyshev expansion is used. The iteration starts with a es-

In this paper we solve the above mean field equations in #imated vorticity distributionw(r). Naturally a circular vor-
unit disk. We also choose for simplicity thg(o) corre- tex with a total vorticity approximately equal to the
sponding to an initial vorticity distribution with only two prescribedQ and a displacement from the disk center

vorticity levels, 0 andj, roughly consistent with the requirdd is used since we are
interested in finding an off-center single-vortex solution.
g(o)=(V—a)d(o)+ad(c—q), O<asV, With this ,(r) we solve the Poisson equatiof?y,

= —w;. Next they, just calculated is substituted back into
with V the area of the disk. In an equilibrium state thethe right-hand side of Eq3) and we see that for each set of
coarse-grained vorticity fieldo(r) will typically take on a  (u«,Q2,8) a neww, can be calculated. Again a root-seeking
continuum of values, always bounded by the vafueThe  algorithm is used here to find the set ¢f,(2,3) giving an

energy of the system is given by w; With requiredQ, M, and E. Now the iteration can be
repeated until a convergea,(r) is reached. We find that the
E— }J’ owodr method is robust and usually, converges quickly to an

2 070 off-center solution or to a symmetric one if the former does

not exist. There are some variations of this method, gg.,
if we use the boundary conditiogio(r =1)=0. The entropy can be choosen initially andu(Q) found for prescribed
is calculated by (Q,M), or Sinstead ofE can be one of the fixed quantites.
Figure 1 shows the entropy as a function of energy for the
S— _f wWo (wo) +(1_ @)In( 1— @”dr symmetric and off-center vortices withQ=0.2 and

Fln q M = 0.04. Different values of) andM yield similar results.

q
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FIG. 1. Mean field solutions foQ=0.2 andM=0.04. Solid
line: symmetric solutions; dashed line: off-center vortices; cross:
bifurcation point. FIG. 2. Vorticity distributions forQ=0.2 andM =0.04 at vari-

ous conditions(a) Symmetric solutions aB=1 (dashed lingand
The energy or temperature can be considered as an indicatge= 800 (solid ling). () Symmetric solutions aB8= — 200 (dashed
of how closely the vorticity is packed. The symmetric solu- line) and 8= —1000(solid line). (c) Vorticity contours for the sym-
tion has a minimum energy limit, corresponding -, metric solution atE=0.003. The contour levels start from 0.1 and
with wq(r) a uniform vorticity circular patch, shown as the increase by an interval of 0.1 toward the centdy.Vorticity con-
solid line in Fig. 2a), with its size and vorticity level tours for the off-center vortex also &=0.003, with the same
uniquely determined by) and M. It is interesting to note ~contour levels agc).
that in this case the size and level are independent of the
g(o) constraint, i.e., the value af in the current two-level equilibrium electron columns. The quadrupole momeggt
vorticity special case. As the energy increas@glecreasgs and rotational frequencl are measured for different vortex
the vorticity level at the center risgsee Figs. &) and 2b)]. sizes and distances to center. The parangteneasures the
The entropy also increases but decreases again after passitigtortion of a vortex from a circular shape, and is defined as
the pointB=dSdE=0 and reaches zero at the high energy(pPxx—Pyy)/(Pxxt+ Pyy), Where Pu= X2 (r)dr and simi-
limit when B— —o0. At this limit the vorticity distribution larly for pyy, with (x,y) measured from the center of a vor-
saturates at levej and forms a circular vortex at the center tex along the major and minor axes. We now compare our
and a vortex ring at the disk boundary, shown as the soli¢alculations with the experimental results. First we note that
line in Fig. 2b). The amount of vorticity in each region is in the experiment the dependence of the behavior on the
determined by the angular momentuvh. In this limit we  off-center displacement is studied for electron columns with
would expect a single off-center vortex to have a higher ensimilar size and internal distribution. To model this situation
ergy because then all vorticity can stay together by adjustingve observe that for the mean field solutions at fix¢dind
the displacement from the center to satisfy the angular mog, differentM values will give off-center solutions at differ-
mentum constraint, and this is indeed shown by the soluent locations with very similar size and distribution. In this
tions. way we can have a good correspondence between the mean

The distribution of the off-center branch at the maximumfield solutions and experimental observed distributions.
energy limit is an elliptical-like vortex with uniform vorticity For the three different values of the total vorticity used in
g at a certain displacemebt from the center. As the energy the experiment, we plag, versusD for 8 equal to— 1000
decreases, the entropy increases, the distribution of vorticitysolid lineg and — 200 (dashed linesin Fig. 3. Calculations
broadens, and the vortex moves toward the disk center. At #or an elliptical constant vorticity approximatiofll] are
critical energyE., D becomes zero and two branches of also shown as the dotted lines. The vortices are very close to
solutions join together at the bifurcation point. At a fixed constant vorticity patches for the fir8tand have a smoother
energyE>E, the off-center vortex always has a larger en-distribution for the second. First we see that for bgththe
tropy than the symmetrical one; i.e., it is a more probablevalues ofq, for a given total vorticity are close in all three
state. Contour plots of symmetric and off-center vortices atases. The likely physical reason is that the distortion comes
the same energy are plotted in Figéc)2and Zd), showing mainly from the effect of the boundarpr in terms of the
the off-center vortex is more diffusive than the symmetricposition of the image chargjeand is mostly determined by
one, yielding a higher entropy. the position of a vortex, not its detailed distribution. The

It is well known that a pure electron column in a high measuredj, from the experiment, shown as the symbols in
magnetic field behaves to a good approximation like a 2CFig. 3, are consistent with our calculations. Although the
ideal fluid. In Ref.[9] electron densities, equivalent to the electron columns have internal distributions closer to those
vorticity distributions for a 2D ideal fluid, are studied for of g=—200 thang=—1000, experimental errors make it
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difficult to tell which line is closer to the experiment. This
may also explain why the elliptical constant vorticity patch
approximation shown as the dotted lines also gives consis-
tentq, values. At smalD the results are almost identical to
the mean field solutions with the larger negat@dout devi-

ate from the experimental results when vortices come close 0.1
to the boundary. On the other hand the mean field calcula-
tions describe correctly the trend of the experimental data at
largeD, with the solid lines seemingly better than the dashed
lines.

d2

IV. BIFURCATION ANALYSIS

The bifurcation from symmetric solutions to off-center
vortices occurs at a critical energy and in principle we can
understand the nature of the bifurcation and the behavior 0.01
near it by computing all the solutions on the off-center
branch. However, this is very time consumiri@] and there
is always the uncertainty whether it is close enough to the

bifurcation. Here we use a second-order perturbation analysis F'S' f3' 42 tas af[fugcgon 0?' I'Iesgse fg’ggg‘ of l(ljn%SA,ngg%_
on symmetric solutions to investigate the bifurcation gj-Spond. from top to bottom, t@=1.5837, 1. ‘ an. : '
rectly. Again, the mean field equation is Solid lines are the mean field solutions wih= —1000; dashed

' ' lines, 3= —200. The dotted lines are the constant vorticity elliptical

approximation. Symbols are the experimental results.

q
w(r)=—V2y(r)= 2
Lrexd lay+rQri—p)] €:BoB1+ Bor >y~ Bou1=0,
=h(y(r),5,Q,un). (4)
€ Co80:(V— BoD1) #1(r)=0, )
[Note that we drop the subscript 0 here fibandw from Eqg.
(3).] We write a solution moving away from the symmetric €2c0s26: (V53— BoD1) ¥, A1) =— 5 B5D 293, (6)

branch at the bifurcation point onto the off-center branch as
(V3= BoD1) Yo 1) == 7 B3D2y i+ D1(BoB;

P(r)=o(r)+ SY(r) = ho(r) + €y (r) COH+ €[ ()
+ Bor 2Qy— Boma)/q, (7

+ i, A1)C0OS29] + O(€3),
€301 (Vi— BoD1) #r31(1) = G(r; B2, Qs 7). ®
w(r)zwo(r)+5w(r)=w0(r)+6w1(r)Cos9+ez[w20(r)
' Here,

+w, A1)cos20] + O(€3), 1d/ d\ m
aerdlgm

B=Bo+ 9= Bo+ Byt 2B+ O(€?), rdrido

= 2_

0=0g+ 0= 0o+ €0, + €20,+0(€9), Bo=quo* {2or"~ s,
D1=wo(q— wp),

= ot Op=pot ey + € upt+O(%).
Do=wy(g—w —2wp),
Here we use subsrcipt O to indicate the symmetric state and 2=wo(q=wo)(d 2
e is a small parr_;\meter. The sﬂner_m at ordere is not in- Dgzwo(q—wo)(q2—6w0q+6wé),
cluded because it is degenerate with thesdesm due to the
rotational symmetry. Substituting these expressions into Eq.

(4) we get G=—B5Doy (Yoot 3 Yo+ D1+ 5 BDa

1 52h — BoD2th1(BoBa+ Bor 2Q,— Bomo)/a.

L eae sh

do==V 5¢—§ SA, 00Aat 5% SA A, ORadhy The first equation just giveg;=,;=u,=0. The second

0 one, Eq.(5), is an eigenvalue equation fgr;(r). The solu-

+O(5Ai). tion will only exist for a particular value of3, and thus

defines the bifurcation point of the symmetric state. After the

HereA,, runs throughy, 8, Q, andu. Now we collect terms  bifurcation point8, and ¢, (r) are obtained, Ar) can be
with the same power oé and angular mode, and set them calculated from Eq(6). To solve fory, ((r), we need three

equal to zero separately. It also becomes apparent here thanstraints to determing,, ,, and u, in Eq. (7). Two of
only ¢, o andy, , (and noty, ;) are needed for the? term.  them are given by requiring, o(r) to give no changes in the
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FIG. 4. Off-center vortex solutions fa=0.2 andM =0.04. FIG. 5. Equilibrium states foQ=0.2 andM =0.06. In the up-

Solid lines: bifurcation analysis calculations; cross: off-center vor-P€r tWo graphs, solid lines: off-center vortices; dotted lines: sym-
tex solutions. metric vortices; cross: bifurcation point. In the lower two graphs,

solid lines: bifurcation analysis calculations; cross:off-center vortex
total vorticity and angular momentum. The third one comesSutions.
from the solvability condition of the third-order equation, vortex) TheD versusE curve is similar to the previous case,

Eq. (8). Comparing Eq(8) with (5), we see that but nowB— B, near the bifurcatiofiwhich is juste?s, from
Eq. (7)] is positive. Figure 5 indicates that we have a sub-
f 1(r)G(r; B2, 0y, mp)rdr=0. critical bifurcation when using the inverse temperature as the
control parameter. Thermodynamically when the system is

Combining th h . q | equilibrated at a fixed temperature, the transition to off-
ombining these three constraints and &j.we can calcu-  onter yortices will be first order. The transition pogjtcan

late g5, ((r), B2, (2, @ndu,. The properties of the off-center e gentified from the crossing of the solid and dashed lines
branch near the bifurcation can be easily computed frony, the free energy—inverse temperature plot. Although it may

these solutions. For example, be difficult to see from the plot, in the small segment of the
off-center branch near the bifurcation poittie portion with
D:a_rf wlrzdr/ Q, dD/dB>0), d°F/dp? is negative. This leads to a negative
specific heat and indicates the state is thermodynamically

unstable at constant temperature.

| 2 3 2 2 The behavior becomes clearer when we plot the inverse

qz—(e Wf w22 °dr=QD )/(M_QD ). temperature versus energy in Fig. 6. Consic[i)ering the solid

line in the inset, we see a typical equation of state for a

) , T first-order transition. The dashed line marks the temperature

E-Ec=¢€ 277] howo g dr + € Ef Yroqrdr, where the symmetric and asymmetric solutions have the
same free energy: the transition will occur here as the tem-

and rotational frequency shifhf=(f—fo)/fo=€2Q,/Q,  Peratureis varied. However, the usual interpretation of a sys-
with fo=f(D—0). tem at the transition temperature as a mixture of two phases
The bifurcation point calculated from E¢F) is plotted as N0 longer applicable here due to the long range interaction

a cross in Fig. 1. We see that it agrees perfectly with the staR€fWeen vortices. When a system at pdins fed energy by
of the off-center branch. In Fig. 4 we pl&, ,, andAf as a heat bath at the same temperature, the system will not be in

functions ofE or B for Q=0.2 andM =0.04. The solid lines an equilibrium state until it gains enough energy to reach

are results from the bifurcation calculations and we find thaP®NtB- If the contact with the heat bath is cut before reach-
the numerical solutions of off-center vortices, shown adnd Es. for example, ac, the system will relax to the
crosses, agree well with the lines near the critical energy. If9uilibrium stateC, which is stable in an isolated environ-
the displacemenb is taken as the order parameter for anMeNt: Thus if the system energy is controlled continuously
off-center state, its behavior clearly indicates a supercritica)/® Nave a continuous transition from symmetric to off-center
bifurcation. Thermodynamically we have a second-ordertates
(continuou$ phase transition & .

Interestingly for a larger value &fl the situation changes.
Bifurcation and off-center state calculation results are shown The mean field equations are obtained by requiring the
in Fig. 5 forQ=0.2 andM =0.06 (largerM yielding a larger  vorticity distribution to be an entropy extremum. It remains

V. THERMODYNAMIC STABILITY
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0 , — —— and the free energy change iséF=6S—B6E
-187.6 =5S?)— BSE®). For convenience ouF differs from the
usual free energy by a factor of 8. Note that indF the
-100 - T linear terms fromSS and SE cancel and we have a quadratic
o ] form left. For a closed system, because is required to be
2 zero, we could uséS— BSE instead of§S. Thus for both
g 200 00018 00019 | cases we will investigatéS?— B5E? but the constraint
g 0E=0 is required for a closed system as well as
® a0 L i 5Q=6M=0. In practice onlySE®)=0 is needed because
§ SS is only evaluated to second order.
= ) To proceed we expandw(r) in a complete set of ortho-
-400 - - normal functionsg;(r): dw(r)==2;a;¢i(r). ThensQ, éM,
SEM, and 65— BSE) can be expressed as
500 L— 1 N MR I
0.002 0.003 0.004 Q=2 Qa, M= M,
Energy I I
FIG. 6. B-E relation for the symmetric and off-center states with SEW = 2 Eia,, 0S?—pBsE?= z Sjaa;.
i ij

Q=0.2 andM =0.06. The line on the left is the symmetric solution;

on the right the off-center vortex. In the inset the symmetric brancl~|_|ere M. andE: are vectors an&. is a matrix depend
below the bifurcation point is drawn dotted and the horizontal. Qi, M, ! 6‘1 P

dashed line marks thgé where free energy of both branches cross'NY onl_y on wo(r). N_OW we make an a_rl_OItrary linear trans-
in Fig. 5. formation transformingy; to b; but requiring

b,=2> Qa, by=2> Ma,

to be shown whether a particular solution is a maximum,
minimum, or saddle point. From thermodynamics we know
that the entropy must be a maximum for an equilibrium state
to be stable. Consideration of the stability also helps us to
understand the bifurcation. To determine the thermodynamidhe constraints can now be satisfied with=b,=0 (or
stability we add a small variatiodn(r,o) to a solution b1=b,=b3=0 for a closed systemin this new coordinate,
no(r,o) and examine how the thermodynamic parametersj changes to another matrik; and §S*)— BSE® be-
change. This idea, with different implementation, has beef0mes ;- »or3)Tijbib;. By removing the first two(or

used previoushy[6,8,13. Here for a closed system with a threg rows and columns froni;;, we can perform the

fixed energy, we will examine the entropy change under th@nalysis without worrying about the constraints. If all eigen-
constraints of constant total vorticity, angular momentum yvalues of the newl;; are negative, the stat@f, i) will be

and energy. On the other hand for a system equilibrating free energy(or entropy maximum. When the largest ei-

with a heat bath at a constant temperature, the free energyenvalue reaches zero as system parameters change, the state
will be studied with fixedQ, M, and 3. Besides these ther- becomes a saddle point.

modynamic contraints, all the infinite conservation laws of In the unit disk we expandw(r) in Fourier modes in the
vorticity integrals should also be respected dy. Since the azimuthal direction and in Chebyshev polynomials in the
state is already in equilibrium, the entropy or free energy willradial direction:

be evaluated up to second orderdn. In the current case of

b= Z E;a; (inthe case of a closed system.
|

a two-level initial vorticity field, a small perturbation _ . . imo
Sw(r) always satisfies the conservation of vorticity integrals. &o(r)_m;m z‘o AmnTn(1)€™.
The changes in the total vorticity, angular momentum, and m+n=even

energy are

Here m+n even is required to give the correct parity for
eachm mode. When the calculation is applied to a symmet-
5Q:f Swdr, 5M:j r28wdr, ric distribution, the componerd,,, separates for different
m and every eigenvector has a definite valuerofThe cal-
culation is also faster because eaclecan be done separately.

B L _ (D) ) This is no longer true for an off-center vortex where rall
5E—f ($odw+ 36 dw)dr=S6E""+ 5E'. modes are coupled together.

The largest eigenvalues af<3 for the symmetric solu-
tions are shown in Fig. 7 for a closed system wik-0.2
and M =0.04. For a fixed temperature system the0 ei-
(8502 genvalues will be different but the conclusions are similar.
5S:Bf Wodadr — f _ 9 gr=sSY+ 652, All eigenvalues are negative except for=1 when the en-

2wo(g— wo) ergy is larger than the critical energy obtained from the bi-

The entropy change, up to the second order, is
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Q=0.2 andM=0.04. The vertical line indicates the bifurcation 3 ) :
energy. g -02 \ | -
o S )
1T} ~ !
. . . . . . -04 \p\ -
furcation analysis. This agrees with our calculations in pre- LSO
vious sections in predicting that the symmetric states are - [ ‘\\ 1
stable belowke.. Above E the solution is no longer a local . : S
. = - ~0.6 . —— S
entropy maximum and thm_—l nature of the unstable ei 0.0018 0.0020 0.0022
genvector confirms that a bifurcation to an off-center vortex Energy
occurs.

Next we examine the stability of off-center vortices. For
the case in Fig. 4 with a supercritical pitchfork bifurcation, it  FIG. 8. Largest eigenvalues for off-center vortex solutions with
is natural to expect that these single vortices are stable. Thi3=0.2. M equals 0.04 and 0.06 for the upper and lower graphs
is exactly the case as shown in the upper part of Fig. 8: altespectively. In both graphs, solid lines correspond to fiysd
eigenvalues are negative and approach zerg_ afor both dashed line to fixed. The vertical solid lines indicate the bifurca-
fixed energy and temperature cag@here is actually a zero tion points; the vertical dashed line marks the beginning of the
eigenvalue, not shown in the figure, because of the rotationalnstable segment calculated for the off-center solutions.
degeneracy.However, forM =0.06 at a fixed temperature,
we have shown that the bifurcation is subcritical and we
expect from the behavior of thermodynamic quantities that
near the bifurcation the off-center branch is unstable. Théhe system energy is used as the control parameter. On the
solid line in the lower graph of Fig. 8 with a positive eigen- other hand if temperature is controlled, a subcriti¢zck-
value in this region explicitly shows that the states are notvard pitchfork bifurcation, and hence a first-order transi-
free energy maxima. On the other hand, when we consider #on, will occur for some parameters. Our calculations of the
closed system we have all negative eigenvalues and thi§ermodynamic stability of these solutions confirm these re-
again agrees with the bifurcation analysis. sults.

The analysis we have presented is a local analysis around
the stationary points of the mean field solution. However,
since the stationary points that are stable are the asymptotic

In this paper the properties of the symmetric and off-long time solutions fromany initial condition with the pre-
center single vortices in a disk are calculated using the meagcribed values of the conserved quantit@sleast ones lead-
field theory of the Euler equations respecting the infiniteing to well mixed dynamics the predictions have a global
number of conserved quantities. The comparison of the ersignificance. The nature of the predictions is also quite dif-
tropy of these solutions shows that the off-center vortices aréerent from given by a local stability analysis of the dynami-
thermodynamically more probable states than the symmetrigal equations.
vortices. The relation between the quadrupole moment speci-
fying the degree of distortion from a circular shape and the
vortex distance to the disk center agrees well with the result
from an electron plasma experiment. The bifurcation from We would like to thank Dr. K. S. Fine for providing us
symmetric to off-center vortices is also investigated by awith their experimental data. This work is supported by the
second-order perturbation analysis, which indicates the bifurNational Science Foundation under Grant No. DMR
cation is a supercriticaforward) pitchfork bifurcation when 9311444,
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